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ABSTRACT
Recognizing emotions in everyday life requires a user-friendly and 
reliable system based on a smartphone and wearables. For over 
a year, we have been developing the Emognition system, which 
enables collecting emotionally annotated physiological signals in 
real-life scenarios. In this work, we describe the system architec-
ture, the components and libraries used, as well as the development, 
testing, and implementation strategies. We explain in detail the 
integration with wearables – smartwatch Samsung Galaxy Watch 
3 and chest strap Polar H10. The encountered problems and de-
veloped solutions are thoroughly discussed. We also provide the 
advantages and limitations of several frameworks for embedding 
machine learning models into a resource-restricted mobile applica-
tion.
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1 INTRODUCTION
Emotion recognition from physiological signals has many impor-
tant applications, e.g., help in emotion-based disorders [9], Autism [6], 
monitoring our well-being [7] and mental health [1], controlling 
stress [22], human-computer interaction [25], recommendation sys-
tems [2], and computer games [13].

The potential market-ready solutions require that machine learn-
ing (ML) models used to recognize emotions are precise and reliable. 
This implies that models should be trained on the data collected 
in daily life rather than in a carefully designed laboratory environ-
ment. Collecting data outside the lab is challenging because we
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have no control over the process [21]. It is unknown what stimuli
will evoke emotions, how often people will experience emotions,
when to trigger self-assessment, and how detailed it should be to
accurately annotate samples (experienced emotions and related
physiological signals). On top of that, self-assessment of emotions
is always subjective and perceived differently by each of us.

Because of the problem’s complexity, only a few systems for
collecting emotionally annotated data in the field have been pro-
posed. One of them is Happimeter [8], which utilizes consumer
smartwatches to collect heart rate, self-assessments, and location
data. When enough data is gathered, the system can provide mood
predictions. The Happimeter consists of mobile (Android/iOS) and
smartwatch (Wear OS/watchOS) applications, both of which are
publicly available. The technical details of the system have not been
revealed by the authors. Hernandez et al. reviewed recent emotion
recognition commercial applications and complained that systems
do not sufficiently explain their functionality to the users, often
hiding the technical limitations, and also that there is too little data
collected in everyday life to create reliable models [10].

To overcome some of these problems, we developed the Emog-
nition system (see Fig. 1a), which can enhance the collection of
emotionally annotated data in real-life scenarios. The main advan-
tages of the Emognition system include: (1) a simple and intuitive,
yet powerful mobile application; (2) integration with consumer
wearables that provide access to the raw physiological signals; (3)
utilizing convenient wearables – the chest-strap Polar H10 and
the smartwatch Samsung Galaxy Watch 3 that is also useful to
the users; (4) detecting intense emotions in real-time, utilizing ML
model embedded into the mobile application; (5) user-friendly strat-
egy for triggering self-assessments – not too often, unobtrusive
notifications, short questionnaires; (6) multiple self-assessment trig-
gers: based on the pre-trained model prediction, quasi-random,
on-demand; (7) ability to replace the model and adjust many pa-
rameters remotely, without reinstalling the application.

The general idea of the system is explained in [5, 18], while
the preliminary validation in everyday life scenario is reported
in [11, 20]. A demo of the Emognition system is available online1.

Themain contribution of this work is a detailed description of the
Emognition system, its architecture, components and libraries used,
validation methods, as well as lessons learned from developing
the system, especially encountered problems and implemented
solutions.

1https://youtu.be/zgJw4krZ5tU
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Figure 1: The Emognition system. (a) Devices compatible with the Emognition system, from left: Polar H10 chest strap, Samsung
Galaxy Watch 3 with Emognition Tizen app, a smartphone with Emognition Android app. (b) High-level system architecture.

2 EMOGNITION SYSTEM
The Emognition system consists of three distinct components. The
mobile application is the main component of the system. It is re-
sponsible for communicating with wearables, especially retrieving
data. The mobile app processes the data in real-time and performs
reasoning whether the user is experiencing intense emotions. If so,
a self-assessment will be triggered. The collected data is transferred
to the Firebase backend service. The smartwatch application is a
hybrid Tizen app for Samsung Watch 3. It collects raw data from
the device’s sensors and stores them internally. Then, the data is
transferred in real-time or synchronized later on. Finally, the Fire-
base backend is used for authorization, long-term data storage,
and configuration of various aspects of the system, e.g., scheduling
assessments. We also utilize the Crashlytics utility, which lets us
monitor potential issues with the mobile app.

2.1 Mobile application
2.1.1 Architecture. The application consists of three main pack-
ages:
• Application – presentation layer. The UI is implemented using
both legacy XML view definitions, and Jetpack Compose compo-
nents. The presentation layer communicates with the business
logic layer using asynchronous data streams (Kotlin Flows).

• Infrastructure – a framework for abstracting away key Android
and third-party components. Provides streamlined APIs which
simplify implementations in both presentation and business logic
layers.

• Model – business logic layer defines how data is created and
transformed. It utilizes APIs from the infrastructure layer to ac-
cess the persistent data storage services (SQLite database, Cloud
Storage, and Firestore).
Application resources, such as drawables or XML view defini-

tions, are tied to flavor-specific source sets. Flavors themselves are
described in the Application flavors section.

2.1.2 Session concept. The physiological data from different de-
vices have to adhere to a shared session definition. A single session

represents data collected from the start of signal recording until
the event that terminates the session – in case of the smartwatch:
battery runs out or device is placed on the charger; in case of the
chest-strap: a device has to be manually disconnected from the
mobile app. Ideally, there would only be one session per day, lasting
from the morning to the evening. During the session’s duration,
raw data from sensors is saved to the corresponding session chunks
(files). Once the configured size of data is reached, the files are
closed, and a new chunk is created. We currently use two-minute
chunks for all supported devices. Depending on the wearable func-
tionality, session files can be created either on a mobile device
(streaming approach) or on a wearable and synchronized later (file
transfer approach). The streaming method offers immediate access
to the raw sensor data, is easier to implement, and does not re-
quire any internal storage on the wearable device. Sometimes, it
is the only method offered. From our experience, the file transfer
is considerably more effective in real-life applications, as brief dis-
connection periods are very common in everyday life, e.g., when
we go to a distant room or floor without a smartphone. The file
transfer approach requires more effort to integrate into the system
(data storage and synchronization logic) and delivers data to the
smartphone after the file is saved, preventing data loss, which may
be crucial for some use cases.

2.1.3 Assessments. The assessment module is a critical component
primarily used for labeling physiological data by the participants.
There are three possible triggers of a brief questionnaire described
in detail in [18]:
• Pre-trained model – if the outcome of the reasoning on data
from the last chunk suggests the user is experiencing an intense
emotion, a self-assessment is triggered. This will temporarily
suspend the real-time reasoning (we do not want to overload the
user with more assessments, and to save battery life). The idle
time can be adjusted in the settings.

• Scheduler service schedules assessments for a given day. Based
on the settings (expected session length, the maximum number
of assessments per day – frequency, and offset variation), surveys
are planned in quasi-random intervals. Besides, they also may
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serve as a validation mechanism of the pre-trained model. We can
expect that responses from such planned assessments contain
less high arousal states than from triggered by the mode.

• On demand – study participants can report their emotions man-
ually anytime, provided a session is running.

2.1.4 Data synchronization. The assessment and session data can
be synchronized with the Firebase backend automatically or manu-
ally. To facilitate such periodic work, we utilize Android’s Work-
Manager API which allows us to schedule tasks using flexible time
windows. Uploaded files can then be transferred to secure offline
storage using our custom download tool. Once synchronized, ses-
sion files are deleted from the user’s device. Additionally, session
file synchronization has certain time-related constraints to make
sure that the pre-trained model can always process the latest data.
Chunks can only be synchronized once their age exceeds a precon-
figured threshold.

2.1.5 Settings. Application settings can be configured for each user
through Firestore. The available settings can be used to customize
(personalize) the parameters of assessments, assessment scheduler,
and pre-trained model modules. New settings are fetched from
the server automatically every time a new session is started. The
application can also function offline with the latest copy of the
custom configuration or built-in default values if no settings have
been manually configured.

2.1.6 Telemetry. To gather information about the application health,
we employed two solutions – Crashlytics and database synchro-
nization. Crashlytics allows us to automatically collect real-time
crash information from all users, provided they have an active In-
ternet connection. Any emerging stability issue is then quickly
forwarded to the development team for further investigation. The
latter solution was developed to monitor the application’s state and
its critical components. Among others, it can be used to investigate
whether certain features, such as pre-trained model or accessory
connection, are working as expected. The SQLite database snap-
shot synchronization can be triggered automatically or manually
by the user. The file is sent to Firebase Storage, from which it can
be retrieved by developers or data analysts using a custom down-
loading tool. The database contains information about sessions,
assessments, file transfers, and logs which provide an insight into
system performance and operation.

2.1.7 Application flavors. Product flavors represent different ver-
sions of the application. Each of these flavors can have its own
features while sharing common source code and resources. To sim-
plify the user interface and hide redundant information from study
participants, we decided to implement two variants of the app,
internal and end-user. The internal version provides access to ad-
ditional information such as file transfer log or remote settings
configuration. As our internal team often uses it to validate various
pre-trained model implementations, it has been configured to run
inference sessions continuously. On the other hand, the end-user
version is the production version of our app – meant to be used by
the study participants. It features a simplified user interface and a
different set of default configuration values.

2.1.8 Background operation mechanisms. To make sure that our
application can work in the background without being interrupted
by the operating system, we employed two main solutions. The
Android’s AlarmManager service is utilized for tasks that have
to be handled at a precise moment in the future (e.g., triggering
scheduled assessments). The WorkManager API is used for both
deferrable and immediate tasks such as data synchronization or
pre-trained model operation. The latter also utilizes a foreground
service, which is run by theWorkManager itself. This feature allows
us to execute long-running operations, as is the case with, e.g., real-
time inferencing or collecting data from a Polar H10 chest strap.
The study participant can also monitor the current state of running
background modules through a non-dismissible notification.

2.2 Smartwatch integration
We integrated the Samsung Watch 3 into the Emognition system
because it is more stable and battery efficient than Wear OS alterna-
tives. The overview of other possible wearables is provided in [19].
Using the Samsung Watch 3 sensors, we continuously collect the
following data: (1) the reflected LED light (the raw photoplethysmo-
gram – PPG) sampled at 25 Hz; (2) heart rate and PP interval, both
sampled at 12.5 Hz; (3) 3-axis accelerometer data (ACC) sampled at
50 Hz; (4) 3-axis gyroscope at 50 Hz, (5) 4-axis rotation at 50 Hz; (6)
pressure at 1 Hz; and (7) ambient light at 1 Hz.

2.2.1 Architecture. The smartwatch application consists of three
projects (depicted in Fig. 1b):
• GUI (web application) – application frontend;
• Autostart service (native service) – responsible for starting
and terminating the sensor service when the charging state is
changed. Provides sensor service status to the GUI application;

• Sensor service (native service) – collects data from sensors and
handles bilateral communication with the mobile application.

Each module is built separately and packaged as a single hybrid
application.

2.2.2 Custom build process. Due to countless issues with Tizen
Studio (the official Tizen development IDE based on Eclipse), we de-
cided to migrate to Visual Studio Code as our primary development
platform. This migration required the implementation of a custom
build pipeline based on Tizen CLI and PowerShell. The build process
is automated by using tasks that call functions defined inside a
custom PowerShell script. This script internally uses the Tizen CLI
interface to perform actions such as installing or launching the app.

2.2.3 Communication. We utilize the Samsung Accessory Protocol
(SAP) to facilitate bilateral communication with the Android app.
The SAP consists of multiple independent modules which can be
used to send messages or transfer files between devices. Commu-
nication is held through a Bluetooth connection. Both apps use a
predefined set of messages, which are transferred as JSON strings.
They can be used to, e.g., retrieve information about available ses-
sions or send synchronization requests for specific chunks. In legacy
app versions, the communication tunnel was established through a
service connection, which is a continuous communication channel.
Due to problems with sudden disconnects (most likely due to the
bandwidth being exhausted by file transfers), we recently moved
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to a connection-less solution called SAMessage, which significantly
improved the connection resiliency.

2.2.4 Battery consumption. During typical use of the Samsung
Watch 3, the battery lasts for about 2-3 days. However, the smart-
watch resources are heavily exploited due to continuous data collec-
tion from multiple sensors (reading and storing data) and commu-
nication with the mobile app. This results in significantly shorter
battery life on a single charge. When using the Emognition system,
the version equipped with a 340 mAh battery (Samsung Watch
3 45mm) lasts for about 12-14 hours, while the smaller version
(41mm, 247 mAh) for 8-10 hours. In fact, due to the high battery
consumption, our smartwatch application could not be published
to the Galaxy Store, so we have to install it manually through the
Tizen CLI. The possible solutions to extend battery life include
reducing the sampling frequency or the number of sensors used or
collecting data for shorter periods throughout the day. This can be
adjusted depending on the use case.

2.3 Chest strap integration
The second device which is integrated into the Emognition system
is the Polar H10 chest strap. The device provides: (1) electrocardio-
gram (ECG) sampled at 130 Hz; (2) heart rate and RR interval, both
with variable sampling; and (3) 3-axis ACC at 25 Hz, 50 Hz (used
by us), 100 Hz or 200 Hz.

The integration process began with the creation of a client on
the mobile app end that communicates directly with the chest strap.
It includes operations to connect with and collect data from the
Polar H10 device.

The biggest downside of the Polar H10 device is lack of the
internal storage2, whichmeans the device has to be connected to the
smartphone all the time to stream the signals. If we lose connection,
even for a brief moment (e.g., we move to the other office/floor
without the smartphone), the data falling within this period are
irretrievably lost. The Polar SDK has the ability to automatically
connect the chest strap to a paired smartphone. However, it requires
that the mobile app is working in the foreground, which is not
always the case. To overcome this, we developed a custom auto-
connect service that initiates the connection as soon as the paired
device is within the Bluetooth range.

The process of obtaining data is initialized by a custom worker,
created using theWorkManager API. When the connection to the
Polar H10 device is lost, the worker terminates the entire pro-
cess. When conditions are restored, the process is automatically
resumed. We also needed to implement a service that can check
whether data streams are available. The service is associated with
the ChunkWriter class, which is responsible for creating chunks and
writing to them. When a chunk contains data from a predefined
period of time (in our case two minutes), the ChunkWriter closes
the corresponding files and starts writing to a new chunk.

The Polar H10 device delivers sensor data in batches, which for
the ECG signal usually contain around 73 measurements and are
delivered approximately every 560 ms. Each batch is assigned a
single timestamp which, according to the documentation, is the
timestamp of the last measurement. The timestamp is represented

2The Polar H10 can store internally only one session (up to 30h) containing only
HR data sampled with 1 Hz.

in nanoseconds since 2000-01-01 00:00:00 (Zulu time zone). We
estimate timestamps of the remaining measurements based on the
sampling frequency.

One of the known problems with the Polar SDK is unexpected
disconnections during data streaming3. In our case, it occurs once
in several dozen sessions, and our work-around is to reconnect the
device automatically. Equally often, we observe another problem
– the Polar H10 stops broadcasting the HR data. Despite several
ideas, we were unable to find a fully working solution. Hence, we
calculate HR from the ECG signal. To connect with the Polar H10,
the mobile app requires location rights, including location in the
background.

2.4 Integration with other wearables
Themodular architecture of the Emognition system allows for fairly
easy integration with newwearables. We plan to develop a common
interface to make the implementation even more convenient.

2.4.1 Aidmed chest strap. For instance, we integrated Aidmed
wearable [4], which is an ECG chest strap similar to the Polar
H10. The Aidmed offers ECG (sampled at 512 Hz) and ACC (50 Hz)
signals, skin temperature (0.1 Hz), as well as breathing-related data
such as bioimpedance, airflow through the nose/mouth (measured
with pressure sensor), and microphone recordings.

Apart from the medical certification and more data, the Aidmed’s
most significant advantage over Polar H10 is its internal memory,
allowing to store sessions on-device (64 MB of memory should
store a couple of hours of ECG, ACC, and HR data depending on
the sampling frequency). If the connection with the phone is lost,
the Aidmed begins to store data internally. Once the connection
is restored, Aidmed can synchronize with the phone data saved
locally.

On the other hand, the Polar H10 is smaller and runs on a battery
(instead of an accumulator) that can last for about 400 hours (vs.
about 16 hours in the case of the Aidmed).

The implementation of the Aidmed is very similar to the Polar
H10. We also have a client class to work directly with the device, an
auto-connect service, and a data collection service that is connected
to the ChunkWriter.

2.4.2 Wear OS-based smartwatches. The number of smartwatches
runningWear OS is growing rapidly. Even Samsung moved from its
own Tizen OS toWear OS since Samsung GalaxyWatch 4. TheWear
OS has many advantages for the developers: (1) more convenient
development of applications due to the Android SDK availability
andmodern developing tools – Kotlin and/or Java vs. C and/or C# in
Tizen and Android Studio; (2) better integrity and straightforward
port of functions between Android app on a smartphone and Wear
OS app on a smartwatch; (3) the Wear OS logging is easily man-
ageable and can be used even in the production version whereas
the logging mechanism in Tizen works only during development
(smartwatch has to be connected with the development tool); (4)
the smartwatch app distribution through the Google Play is more
smooth and quicker than through the Galaxy Store.

Unfortunately, the Wear OS-based smartwatches still have sev-
eral critical issues: (1) very short battery life – only six hours in the

3https://github.com/polarofficial/polar-ble-sdk/issues/222
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case of the Fossil Gen 5; (2) unstable BT connection between smart-
phone and smartwatch; (3) the manufacturers implement sensors
functionality themselves, hence the documentation of sensors is
often very limited; (4) the manufacturers can impose access restric-
tions to some sensors/data, e.g., in the case of Samsung Watch 4
developers are required to register to the Partner App Program to
gain access to the Samsung Privileged Health SDK.

Due to the aforementioned requirement, we were unable to
integrate Samsung Watch 4 with the Emognition system. We did,
however, successfully integrate Fossil Gen 5. It provides the raw
PPG with a 20 Hz sampling rate, ACC, gyroscope data, altitude,
ambient light, GPS, and other data. Due to the short battery life and
unstable connection, we do not plan to include the Fossil Gen 5 in
our studies. We hope that the future Wear OS devices will be free
from the critical issues mentioned above. Until then, in our opinion,
the Samsung Watch 3 with Tizen OS is the best choice for studies
aiming to collect raw physiological signals.

2.5 Cloud backend
We utilize the Firebase cloud solution as the backend of the Emog-
nition system because it facilitates, among others: straightforward
implementation in the mobile app, user authentication and au-
thorization, data storage, and tracking mobile app stability. The
Firebase Authentication module supports multiple authentication
methods. We decided to use anonymized login and password, both
generated by the Emognition system. We use the Storage module to
persist user-related data, such as physiological data (sessions), self-
assessments, and application telemetry (logs). The Firestore module
is useful for storing and adjusting settings and parameters used
across the Emognition system. The Crashlytics module helps in
collecting, managing, and analyzing application crashes and crash
reports. It allows us to diagnose and troubleshoot application issues.
For each application flavor and build type (i.e., debug or release) we
use a separate Firebase project.

3 ML MODEL EMBEDDING
One of the vital features of the Emognition system is the ability to
recognize a user’s intense emotions. To achieve this, a pre-trained
machine learning model embedded into the mobile application
performs reasoning based on continuously incoming chunks of
physiological data. To perform real-time reasoning on the smart-
phone instead of the typical cloud-based architecture, we had to
overcome two challenges: (1) preprocessing data locally on the
smartphone, using Kotlin-compatible or Java libraries, so it can be
used in the classification task, and (2) embedding/converting the
pre-trained model into the mobile application code.

Our typical pipeline to perform emotion recognition includes
signal processing, feature extraction, model training, model vali-
dation, and classification. For research purposes, we use a pipeline
developed in the Python environment. It utilizes the most popular
ML libraries: NumPy [14], SciPy [24], Sklearn [23], TensorFlow [26],
and many other used to extract features from signals. Only some of
the methods/libraries used for data preprocessing could be embed-
ded into the mobile app unaltered. For others, we had to rewrite
them in Kotlin or find alternatives. In a few cases (e.g., signal re-
sampling), we had to make some simplifications.

Regarding the ML model embedding/conversion, we found the
following solutions: PyTorch Mobile [17], TensorFlow Lite[27],
sklearn-porter[12], and ONNX Runtime[16]. See Tab. 1 for their
features and limitations. We evaluated all of them except the Py-
Torch Mobile. Most frameworks work exclusively with their related
Python library. Only the ONNX Runtime enables the conversion of
models created with different tools to a common .ort format. All
frameworks except the sklearn-porter enable model optimization
and provide prediction probability (besides providing the predicted
label). The most significant disadvantage of the sklearn-porter is
the necessity to include the translated model source code in the
mobile application during compilation. This makes it impossible
to remotely switch the model, as the mobile app has to be rebuilt
and updated. Other frameworks enable easy remote model replace-
ment (in our case, implemented using cloud storage). In addition,
all frameworks, except sklearn-porter, feature the ability to embed
model-specific metadata in converted files, simplifying the reason-
ing and model storage processes, as all important information and
settings are available together with the model itself.

In our opinion, the ONNX Runtime is the best solution available
on the market today. Its implementation in the Emognition system
allowed us to significantly simplify the logic and source code. Addi-
tionally, model personalization is as easy as specifying the model ID
and its parameters (e.g., confidence) in the user-related settings. The
only drawback of the ONNX Runtime we have identified so far is
the complex integration process which involves building the library
from the source. It is more complicated than other frameworks we
evaluated.

4 DEVELOPMENT FLOW
For version control, we utilize Git alongwith Github – a cloud-based
Git hosting service. Github offers many additional collaboration
features such as issue tracking, automated workflow support, and
task management utilities.

Pull request flow. We configured branch protection rules to
simplify the development process and protect our repository against
accidental and unreviewed pushes to critical development branches.
These rules mandate that any change to the source code has to go
through a separate feature branch, which is then compared to the
main development branch through a pull request (PR). Proposed
changes must be verified by another developer through code review.

Quality assurance.Almost every PR represents a certain feature
or bug fix that the QA team can test. All PRs follow a standard
description template which consists of a summary of changes and
testing instructions. Every approved code review will cause a new
application artifact to be created, built, and uploaded. The QA team
then uses these artifacts to perform manual tests according to the
provided testing instructions.

CI/CD pipelines. The repositories feature multiple automated
workflows, which are triggered when certain actions are performed.
Currently, supported workflows are described in Tab. 2.

5 DISCUSSION AND LIMITATIONS
During the development of the Emognition system, we encoun-
tered and solved many problems. The design of this type of system
should be based primarily on the use case, which determines further
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Table 1: Machine Learning frameworks for models conversion; (*) denotes frameworks tested in our system.

Feature PyTorch Mobile TensorFlow Lite* sklearn-porter* ONNX Runtime*

Python library PyTorch TensorFlow Scikit-learn PyTorch, TensorFlow, Scikit-learn
ML model Any Any Some Any
ML model optimization + + − +
Prediction probability + + − +
Metadata + + − +
Remote model swap + + − +
Available Mobile APIs Android, iOS Android, iOS None, only converted model code Android, iOS

Table 2: CI/CD workflows implemented in our repository

Name Trigger Description

Continuous integration On push Builds the application and runs unit tests. Uploads test results as artifacts on completion.
Create testing artifacts On approved code

review
Builds the application in debug or release configuration depending on the target branch.
Artifacts are uploaded to Github for use by the QA team.

Create release On master push Creates a Github release, and in the case of the Android app, builds both application
variants and submits them to the Google Play store.

choices and decisions. For instance, which physiological signals
are required. From there, wearables that offer these signals and
meet other criteria (integration with the system, size, battery life,
usability for the user, price, etc.) will be identified [19]. In our case,
the smartwatch is more comfortable and has additional functions
for the user, but the PPG collected during motion is of poor quality.
On the other hand, the chest strap gives a more accurate ECG but
is uncomfortable and does not offer any features to the user.

It is good to decide early on whether we need to perform real-
time reasoning and embed theMLmodel into themobile application
or if the reasoning in the cloud is acceptable. Furthermore, do we
need to collect data continuously, or perhaps it is enough to obtain
basic physiological data such as HR periodically?

We should also take into account possible external issues – bugs
in third-party SDKs (e.g., known Polar H10 problems, unstable
SAP connection), insufficient device and SDK documentation, as
well as OS restrictions. With each new version of the Android
OS, the restrictions on running applications in the background,
data transfer, and excessive battery consumption are becoming
increasingly stringent. At some point, it might be necessary to
develop a custom Android OS (custom ROM), which grants all the
required permissions to the application and does not put the app to
sleep. Our current solution requires the user to add the Emognition
mobile app (and related apps such as GalaxyWearable and Samsung
Accessory Protocol) to the list of exceptions that are not optimized.

5.1 System validation
The system validation can be divided into two parts: technical
validation and system usability validation.

First, it is important to test the application in a thorough and
systematic manner by performing unit tests, integrity tests, and
manual tests. Moreover, it is critical to always double-check the
final version/setup of the system in the staging environment, as
there might be some differences in the compilation and release
processes between the test and production versions.

In our system, we utilize all of the aforementioned testing meth-
ods. Our repositories feature CI workflows that automate the pro-
cess of compiling and running unit tests for each commit that is
pushed to a remote branch. Integration tests are performed manu-
ally before deploying a new application version. These could not be
automated because they require access to a physical device. Manual
testing is also a vital part of our development workflow – the QA
team validates each PR according to the provided testing instruc-
tions. They also verify key elements and features of the system
before a candidate release is pushed to the production.

To test the usability of the system, we conducted a pilot study in
everyday life scenario. The 13 participants (six females) took part in
a three-month-long trial. In this trial, only the smartwatches were
utilized (the chest strapwas not used). The participants were prompt
with a self-assessment up to six times per day. Some questionnaires
were triggered randomly, and some were based on the ML model.
We managed to collect over 1200 self-reports, out of which almost
500 reported intense emotion. The questionnaires triggered by the
MLmodel reported intense emotionmore often than those triggered
at random. The personalized ML model was up to 38% better in
catching an intense emotion moment than the random triggering.
For more details please refer to [11, 20].
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5.2 Users’ feedback
The users’ feedback should always be gathered to improve the
system. Therefore, after conducting the above-mentioned pilot
study [11, 20], we asked the participants to fill out the post-study
questionnaire regarding their opinion on the system. Nine out
of 13 participants completed the questionnaire. In general, all re-
spondents felt comfortable using the system and found it to be
convenient. The system did not cause fatigue or irritation. Two
participants reported that the study improved their perception of
emotions, but the majority said they did not see a difference.

The reported problems included: (1) forgetting to use the sys-
tem and/or to wear the smartwatch; (2) forgetting to fill out the
questionnaires; (3) filling out the questionnaire was not possible in
some situations, e.g., while driving a car; (4) the need to manually
start the smartwatch application after smartwatch restart; (5) the
system drains the smartwatch and the smartphone batteries; (6)
notifications about the app working in the background and about
new assessment to fill out were similar, thus confusing.

Most of the problems will be addressed by us, but some are
difficult to tackle, e.g., it is fairly easy to recognize that someone is
traveling by car, but it is much harder to distinguish whether they
are drivers or passengers.

5.3 Ethical considerations
When conducting an affective study, especially one that utilizes
wearables, we should consider factors that can negatively impact
the participants and/or the study itself and prepare the research
accordingly to the identified risks. Particularly important are issues
related to collecting, processing, storing, and sharing personal and
biological information, anonymization, research-related negative
emotions, commercial technology validity and reliability, and par-
ticipants’ exclusivity issues. A comprehensive discussion on risks
in affective studies can be found in [3, 15].

6 CONCLUSIONS AND FUTUREWORK
We described the crucial concepts behind the Emognition system,
provided details about its components and discussed its limitations.
Overall, the system is well suited for everyday life studies. Thanks
to the embedded ML model detecting intense emotions, the system
increases the amount of emotionally annotated data. What is more,
in combination with the smartwatch, the system is unobtrusive
to the study participants. The modularity of the system facilitates
easy extension and integration of new wearables.

When developing such a system, it is important to automate
as many processes as possible, especially those performed itera-
tively, e.g., testing, releasing, and updating the application as well
as collecting, storing, and backing up the data. It is also crucial to
develop monitoring mechanisms that will alert the study manager
if a problem with the system or particular participant occurs. The
system should be tested on each development step, i.e., prototype,
beta version, and released version. Additionally, several trial tests
should be performed to validate the intended goals. After each trial
and study iteration, the feedback from the participants should be
taken into account.

We hope that lessons learned from developing the Emognition
system will contribute to the affective studies, especially those
performed in real-life scenarios.

Our next steps include further personalization of ML models,
i.e., (re)training models with samples collected from a particular
user, as well as obtaining more data from the smartphone to better
understand the context of the reported emotional situations.
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