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Abstract: Bringing emotion recognition (ER) out of the controlled laboratory setup into everyday life
can enable applications targeted at a broader population, e.g., helping people with psychological
disorders, assisting kids with autism, monitoring the elderly, and general improvement of well-being.
This work reviews progress in sensors and machine learning methods and techniques that have made
it possible to move ER from the lab to the field in recent years. In particular, the commercially available
sensors collecting physiological data, signal processing techniques, and deep learning architectures
used to predict emotions are discussed. A survey on existing systems for recognizing emotions in
real-life scenarios—their possibilities, limitations, and identified problems—is also provided. The
review is concluded with a debate on what challenges need to be overcome in the domain in the near
future.
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1. Introduction

Emotions are a basic component of our life, just like breathing or eating. They are
also responsible for a majority of our decisions [1]. For that reason, emotion recognition
is an important and profitable research problem. The ability to recognize emotions can
help in emotion-based disorders [2], autism [3,4], monitoring our well-being [5,6] and
mental health [7], controlling stress [8], human–computer interaction [9], recommendation
systems [10,11], and computer games [12,13]. At the same time, emotion recognition is a
very ambitious task, as it connects several disciplines, i.e., psychology, electronics/sensors,
signal processing, and machine learning; see Figure 1a.

Figure 1. (a) The interdisciplinary background of emotion recognition; (b)modalities used to recognize
emotions.

For years, psychologists have analyzed people and the processes taking place between
the affective situation and human reaction and behavior. This allowed them identify
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different perspectives on emotions [14] and define various models such as basic emotion
models [15–17], appraisal models [18,19], psychological construction models [20,21], and
social construction models [22,23]. As a consequence, there is no single commonly accepted
definition of emotions.

Electronics created small and effective sensors that capture images/videos, record
audio, and collect physiological signals, as seen in Figure 1b. Signal processing allows us to
efficiently process the collected data, improving their quality and obtaining informative
features. Machine learning, in turn, enables us to analyze vast amounts of data, automati-
cally extract patterns, create affective states’ representations, and thus recognize or even
predict emotions or other affective states.

This work provides the state of the art in the fields of wearable sensors, signal process-
ing, and machine learning models and techniques, adequate for the emotion recognition
from speech, facial images, and physiological signals. The crucial aspects of each domain
are explained with examples. Rather than providing the details of each method/system,
their general idea is presented, positioned in the context of the problem, and the reference
to the source article is provided to keep the article concise.

The primary focus of this review is on emotion recognition from the physiological
signals because it can be performed continuously in everyday life using wearables, as
opposed to facial and speech emotion recognition. However, the latter modalities are also
covered in this work. The abbreviations used in the article are listed in the Acronyms
section at the end of the paper.

2. Sensors and Devices

Different modalities can be utilized to perform emotion recognition, but first, the
appropriate sensors have to be utilized to capture these modalities.

2.1. Emotion Recognition from Physiology

Among the physiological signals, the EEG provides the highest accuracy of emotion
recognition [24–26]. However, due to the EEG electrodes sensitivity, at this point, it is
impossible to utilize EEG in the field. Therefore, researchers focused on wearable devices,
which provide various biosignals and other environmental data [27]. Primarily, ECG, BVP,
and EDA signals are used [5,9,12]. Those signals can be further enriched with ACC, GYRO,
SKT, and RSP [2,7,8,28,29], as well as with UV, GPS, and MIC data [30].

Numerous devices for obtaining physiological signals are available on the market.
Precise medical-grade devices, such as the BioPac MP160 and the ProComp Infiniti, can
be used for laboratory studies. They are large, wired, and complicated, but they are also
handled by a trained technician. Devices for studies in the field, however, must be small,
wearable, and easy to operate by the participant. There are many types of wearables to
choose from, e.g., smart rings, wristbands, smart bands, fit bands, smartwatches, armbands,
chest straps, chest patches, headbands, smart glasses, smart clothes, and more.

The choice of a particular type and model depends on the study we plan to per-
form [31]. For instance, devices monitoring cardiac and electrodermal activity are the best
choice for emotion recognition in the field. Comfortable EEG headbands can be used for
meditation studies. Dedicated devices are necessary for analyzing sleep, while commercial
smartwatches are sufficient for monitoring physical activity. When selecting a device for
studies in the field, the following factors should be taken into consideration:

• What physiological signals do we need to collect? Does the device provide them in a
raw format?

• What is the signal recording frequency? Is it appropriate for our problem?
• How portable is the device? What types of physical activities does the device have to

handle?
• How are the data obtained from the device? By cable or directly transferred to the

cloud? Do we need to integrate the existing study system with the device?
• How convenient and easy to use is the device? How long should the battery last?
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Table 1 provides an overview of various types of wearables, their sensors, and physio-
logical signals and other data they provide. The author manually investigated the devices
marked with *. For other devices, the official producers’ or other external information were
used. Most devices included in the table were introduced over the past five years. Addi-
tionally, a few older devices, which were, or still are, frequently utilized in affective studies,
are covered, e.g., Empatica E4 released in 2015 and BodyMedia SenseWear introduced in
2003.

Smartwatches seem to be the most convenient device for the participants and offer
some extra features. Moreover, people already have a long history of wearing watches and,
thus, are more willing to accept such devices. As for the downside of smartwatches, their
HR and HRV readings are not very precise when participants are in motion [32]. More
accurate measurements can be obtained with chest straps [33], which, in turn, are not very
comfortable. Perhaps, a compromise would be a chest patch such as Vital Patch, although
it can only run on a battery for a limited time and still requires more validation studies.

Other devices analyzed within this work were Emotiv Epoc+*, NeuroSky, emWave2,
Honor Band 4*, Xiaomi Mi Band 5*, Xiaomi Mi Band 3*, Polar A370*, Fitbit Blaze*, Samsung
Galaxy Fit E, Samsung Gear Live, Philips DTI-2, Sony SmartBand 2, and 20 others. They
do not offer access to the data or have other disadvantages; hence, they were not included
in Table 1.

2.2. Facial Emotion Recognition

Emotion recognition from facial expressions requires a camera to obtain the face
image. Ideally, the face would be turned toward the camera, without any obstacles (hair,
eyeglasses, and face mask), and the image would be captured in high resolution and good
lighting conditions. Such criteria are easy to fulfill in a laboratory environment but very
troublesome in daily life. It is possible to use a smartphone or laptop camera, but this
limits the emotion recognition to situations when the subject is in front of the camera.
McDuff et al. performed a field study utilizing laptop cameras to analyze facially expressed
affection [34]. They recorded about 120 people for approximately eight days between 7 a.m.
and 7 p.m. and found out that people were in front of the computer on average for 19% of
this time. However, there are still use-cases in which ER from the face can be helpful, e.g.,
in online learning to ensure students are focused and engaged instead of being bored or
frustrated [35].

2.3. Speech Emotion Recognition

In the case of ER from speech, the microphone is responsible for recording audio
signals. Again, it is easier to obtain clean, undisturbed audio without background noise
in a laboratory setup. It is also possible at home when we interact with speaker-based
home assistants, such as Alexa or Google Home. Outdoor, however, the environmental
sounds and other people’s utterances are most likely captured alongside the main speaker’s
voice. Nevertheless, speech emotion recognition in the field might still be possible with
appropriate filtering. For example, Lu et al. proposed the StressSense, a smartphone
application that can detect stress in diverse real-life conversational situations, both indoor
and outdoor [36].
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Table 1. The recent commercially available wearable devices, their sensors measuring physiological signals, and the data they provide; (*) marks wearables tested by
the author.

Device Type Release Date Sensors Physiological Raw Signals Other Data

Apple Watch 7 Smartwatch October 2021 ACC, AL, ALT, BAR, ECG, GPS, GYRO, MIC, PPG BVP, ECG, SpO2 ACC, AL, ALT, BAR, BP, GPS, GYRO, HR, MIC, RSP, SKT, STP
Fitbit charge 5 Smartband September 2021 ACC, BAR, GPS, GYRO, PPG - ACC, BAR, GYRO, HR
Samsung Galaxy Watch 4* Smartwatch August 2021 ACC, AL, BAR, ECG, GPS, GYRO, MIC, PPG BVP ACC, AL, BAR, GPS, GYRO, HR, MIC, PPI, STP
Huawei Watch 3 Smartwatch June 2021 ACC, AL, BAR, GPS, GYRO, MAG, MIC, PPG, TERM - ACC, AL, BAR, GPS, GYRO, HR, MAG, MIC, SKT, STP
Fitbit Sense Smartwatch September 2020 ACC, AL, ALT, GPS, GYRO, MIC, PPG, TERM - ACC, BAR, GYRO, HR
Samsung Galaxy Watch 3* Smartwatch August 2020 ACC, AL, BAR, ECG, GPS, GYRO, MIC, PPG BVP ACC, AL, BAR, GPS, GYRO, HR, MIC, PPI, STP
Apple Watch 5* Smartwatch September 2019 ACC, BAR, ECG, GPS, GYRO, MIC, PPG - ACC, BAR, CAL, GPS, GYRO, HR, MIC, STP
Fossil Gen 5* Smartwatch August 2019 ACC, AL, ALT, GPS, GYRO, MIC, PPG BVP ACC, AL, ALT, GPS, GYRO, HR, MIC, STP
Garmin Fenix 6X Pro Smartwatch August 2019 ACC, AL, ALT, GPS, GYRO, PPG, SpO2 BVP, SpO2 ACC, AL, ALT, GPS, GYRO, HR, STP
Samsung Galaxy Watch* Smartwatch August 2019 ACC, AL, BAR, GPS, GYRO, MIC, PPG BVP ACC, AL, BAR, GPS, GYRO, HR, MIC, STP
Polar OH1 Armband March 2019 ACC, PPG BVP ACC, PPI
Garmin HRM-DUAL Chest strap January 2019 ECG ECG RRI
Muse 2* Headband January 2019 ACC, EEG, GYRO, PPG, SpO2 BVP, EEG, SpO2 ACC, GYRO, HR
Fitbit Charge 3* Fitband October 2018 ACC, ALT, GYRO, PPG - ACC, ALT, HR
Garmin VivoActive 3 Music* Smartwatch June 2018 ACC, BAR, GPS, GYRO, PPG - ACC, CAL, HR, PPI, RSP, STP
Oura ring* Smart ring April 2018 ACC, GYRO, PPG, TERM - HR, PPI, SKT
Moodmetric* Smart ring December 2017 ACC, EDA EDA STP
DREEM Headband June 2017 ACC, EEG, PPG, SpO2 BVP, EEG, SpO2 ACC, HR
Aidlab Chest strap March 2017 ACC, ECG, RSP, TERM ECG, RSP, SKT Activities, HR, HRV, STP
Polar H10 Chest strap March 2017 ACC, ECG ECG ACC, RRI
VitalPatch Chest patch March 2016 ACC, ECG, TERM ECG, SKT HR, RRI, RSP, STP
Emotiv Insight Headband October 2015 ACC, EEG, GYRO, MAG EEG ACC, GYRO, MAG
Empatica E4* Wristband 2015 ACC, EDA, PPG, TERM BVP, EDA, SKT ACC, HR, PPI
Microsoft Band 2 Smartband October 2014 ACC, AL, ALT, BAR, EDA, GYRO, PPG, TERM, UV BVP, EDA, SKT ACC, AL, ALT, BAR, CAL, GYRO, HR, PPI, STP, UV
BodyMedia SenseWear Armband 2003 ACC, EDA, TERM EDA, SKT ACC
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3. Signal Processing and Transformation

The goal of signal processing is to eliminate interference and distortions from phys-
iological signals which are not related to emotional characteristics and might bias the
predictive ability of the models. The possible sources of signal artifacts are peripheral
electromagnetic fields impacting electronic circuits within wearables, mixing of signals gen-
erated by different organs (e.g., the heart, brain, or muscle electrical activities), temporary
deactivation or saturation of sensors, electronic noise generated inside the circuits, body
motions, and movements and adjustments in sensor contact with the skin. The common
approaches to reducing signal distortions are based on the known properties of the physio-
logical signals. For example, the amplitude of the ECG signal should not exceed values
0.5–5 mV, whereas the ECG frequency spectrum is usually within 0.05–150 Hz values. On
the other hand, the BVP amplitude is usually within 20–300 mmHg and the BVP frequency
spectrum within 0–15 Hz. Alternatively, the data-driven approach can be applied. We
can distinguish four main groups of methods for removing artifacts: (1) filtration and
smoothing; (2) decomposition and removing undesirable components; (3) normalization;
and (4) winsorization.

According to the Nyquist–Shannon sampling theorem, before converting the pro-
cessed voltage into a digital signal, initial antialiasing filtering should be performed. The
application of additional filtering (both analog and digital) and smoothing emphasize
desired frequency components while reducing unwanted ones. High-pass filters, for exam-
ple, eliminate slowly wandering components; low-pass filters minimize high-frequency
disturbances; pass-band filters focus on specific frequency ranges; and signal-smoothing
techniques prioritize low-frequency components.

Decomposition facilitates the separation of desired and undesired components. The
wavelet transform (WT), which is available in continuous (CWT), discrete (DWT), and fast
(FWT) variations, turns a nonstationary input onto the coefficient components of various
scales (also connected to frequency ranges) by using a hand-picked family of wavelets to
detect local correlations. The first component, in most cases, is a measurement noise or
an electromyogram anomaly that can be eliminated afterward. Independent component
analysis (ICA) is yet another method for distinguishing independent input signals (mixed
while recorded by multiple sensors).

Normalization allows us to retain the energy of signals at a consistent level, especially
when data from multiple devices are merged. Interpolation replaces damaged parts of the
signal while accounting for the statistical features of some or all neighboring data. Lastly,
winsorization reduces extreme values to reduce the effect of possibly spurious outliers.

Lee et al. showed that the application of the signal processing and transformation
methods, i.e., ICA, fast Fourier transform (FFT), truncated singular value decomposition,
can reduce motion artifacts from the BVP signal recorded with a wearable device, re-
sulting in more precise HR readings, even during intense exercises [37,38]. Masinelli et
al. proposed the SPARE (spectral peak recovery) algorithm for BVP signals pulse-wave
reconstruction [39]. The SPARE performs signal decomposition with singular spectrum
analysis, spectral estimation with sparse signal reconstruction and FFT, harmonic relation-
ship estimation, and reconstruction by applying a narrow bandpass filter to the resulting
components and summing them up. The validation performed by the authors showed a
65% improvement in the detection of different biomarkers from the BVP signal.

Signal processing and transformation can also be helpful in feature extraction. Feng
et al. utilized wavelet-based features to classify emotions from the EDA signal [3]. They
compared four mother wavelet candidates, i.e., Daubechies, Coiflets, Symlets, and C-Morlet
and found the C-Morlet to be the best. Zhao et al. applied FFT to obtain subbands of BVP
and HRV signals collected with Empatica E4 device [40]. They also used dynamic threshold
difference (DTD) to obtain HRV from BVP.
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4. Machine Learning Models and Techniques

Emotion recognition usually involves a massive amount of data, e.g., speech or physi-
ological signals sampled with high-frequency, facial images (or videos) captured in a high
resolution. Processing such extensive sequential data requires complex structures, adequate
methods, and significant computing power. Currently, the best approach is to utilize deep
neural network architectures capable of reflecting temporal dynamic behavior of affective
data, thus providing rich representational possibilities. The network architectures explicitly
designed to capture the temporal information of data are the recurrent neural networks
(RNNs). Besides emotion recognition, RNNs are used in problems such as time-series
prediction, speech recognition, machine translation, and robot control. However, in their
classic design, the RNNs have gradient vanishing and exploding problems. Architectures
introducing gates (gated recurrent unit—GRU, long short-term memory—LSTM) and
shortcuts (residual networks—ResNet) were proposed to overcome these problems.

Another deep neural network architecture helpful in emotion recognition is convo-
lutional neural networks (CNNs). CNNs are excellent in image vision problems; hence,
they are convenient in face detection and analysis tasks and can also be applied to signals’
spectrograms. A common approach is to mix and combine several architectures to benefit
from their advantages.

In order to develop machine learning models capable of emotion recognition, we need
data obtained from sensors to be labeled with affective states. This is usually accomplished
by asking the participants to provide a self-assessment. The labeled dataset is commonly
divided into three parts: one for training the model, another one for validating/optimizing
the model, and the last one for testing the performance of the model. The deep learning
models may require hundreds, thousands, or tens of thousands of samples to perform well.
By contrast, the affective datasets are most often sparse and contain up to 50 participants
(up to a few thousand samples).

The following sections describe the most popular deep learning architectures for emo-
tion recognition problems and several techniques for better model creation and adjustment.
Additionally, some of the recent emotion recognition studies utilizing state-of-the-art deep
learning architectures are summarized in Table 2 and briefly described in the text. In
most cases, the performance of emotion recognition is also reported. Please note that it is
provided only to give some general idea of what level of performance is achieved in the
literature. The results should not be compared without carefully analyzing the details of
each work. Studies on emotion recognition can be different in many ways, e.g., they may
vary in: (1) the dataset used; (2) the emotional model applied; (3) the machine learning
approach adopted; (4) the number of classification classes and their distribution; (5) the
validation strategy (e.g., user-independent vs. user-dependent); (6) whether the results are
provided for train, validation, or test set; and (7) the performance quality measure.
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Table 2. The recent emotion recognition studies utilizing state-of-the-art deep learning architectures.

Modality Reference Architecture Classification/Regression Problem
Considered

Phys. signals Awais et al., 2021 [41] LSTM 4-class: amused, bored, feared, relaxed

Dar et al., 2020 [42] CNN + LSTM 4-class: high/low arousal/valence

Song et al., 2020 [43] CNN 2 × 3-class: calm/medium/excited arousal;
unpleasant/neutral/pleasant valence

Tizzano et al., 2020 [44] LSTM 3-class: happy, neutral, sad

Kanjo et al., 2018 [30] CNN + LSTM 5-class: level of valence (from 0 to 4)

Nakisa et al., 2018 [25] LSTM 4-class: high/low arousal/valence

Santamaria-Granados et
al., 2018 [45]

CNN 2 × binary: high/low arousal/valence

Facial
expression

Li and Lima, 2021 [46] ResNet-50 7-class: angry, disgusted, fearful, neutral,
happy, sad, surprised

Sepas-Moghaddam et al.,
2020 [47]

VGG16 + Bi-LSTM +
attention

4-class: angry, happy, neutral, surprised

Efremova et al., 2019 [48] ResNet-20 5-class: positive, weak positive, neutral, weak
negative, negative

Cheng et al., 2017 [49] FCN + CNN regression: valence value

Bargal et al., 2016 [50] ResNet-91 with 2 × VGG 7-class: angry, disgusted, fearful, neutral,
happy, sad, surprised

Speech Fan et al., 2021 [51] PyResNet: ResNet with
pyramid convolution

4-class: angry, neutral, happy, sad

Wang et al., 2020 [52] dual-sequence LSTM 4-class: angry, neutral, happy, sad

Yu and Kim, 2020 [53] attention-LSTM-attention 4-class: angry, neutral, happy, sad

Zhang et al., 2019 [54] FCN-attention 4-class: angry, neutral, happy, sad

Zhao et al., 2019 [55] attention-Bi-LSTM +
attention-FCN

4-class: angry, neutral, happy, sad;
5-class: angry, emphatic, neutral, positive,
resting

Li et al., 2019 [56] ResNet 7-class: angry, bored, disgusted, fearful,
neutral, happy, sad

Visual +
phys. signals

Gjoreski et al., 2020 [57] StresNet, CNN, LSTM binary (driver distraction)

4.1. Residual Networks

In 2015, He et al. proposed the ResNet [58] architecture, which facilitates creating very
deep neural networks without concerns about performance and the vanishing gradient
issue. All thanks to shortcuts that omit one or more layers. Later, He et al. refined ResNet
with a pre-activation residual block, enabling even deeper networks [59]. The ResNet
takes an image as the input and includes convolution layers. It is especially helpful in
image processing problems, such as face recognition and landmark detection. It can also be
applied to physiological or speech data once the signal is represented as an image or its
features, e.g., power spectral density or other characteristics from the time or frequency
domains.

For instance, Li and Lima used ResNet-50 (containing 50 layers) to perform facial
expression recognition [46]. They achieved average accuracy of 95 ± 1.4% in recognizing
seven classes: happy, sad, fearful, angry, surprised, disgusted, and neutral. Efremova et
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al. managed to embed a 20-layer ResNet model on a mobile device to perform real-time
face and emotion recognition [48]. They distinguish positive, weak positive, neutral, weak
negative, and negative classes and obtained 87% of accuracy on the test set. Bargal et al.
concatenated 91-layer ResNet architecture with two VGG networks [60] to perform emotion
recognition from videos [50]. They argue that this provides some form of regularization.
They identify six basic emotions (anger, disgust, fear, happiness, sad, and surprise) and
neutral state with 57% of accuracy on the test set.

Li et al. utilized ResNet to investigate speech emotion recognition [56]. They replaced
the last layer with classifiers and observed the best results with the SVM classifier (on
average 90% accuracy). They used EMODB [61], a publicly available dataset that offers
about 500 utterances with anger, boredom, disgust, fear, happiness, sadness, and neutral
attitude. Fan et al. proposed PyResNet to classify emotions from speech [51]. The name
comes from modifying the second layer of the ResNet with pyramid convolution, which
should reduce the issue of uncertain time position of accurate speech information. They
collected almost 150,000 utterances labeled with numerous emotions (anger, happiness,
sadness, disappointment, boredom, disgust, excitement, fear, surprise, normal, and others).
PyResNet based on the ResNet152 achieved 62% of weighted accuracy on the test set in
speech classification. Their dataset is publicly available.

Various modifications of the ResNet architecture were proposed. Gjoreski et al. in-
troduced StresNet [57] (originally named STRNet), which aims to capture a temporal and
spectral representation of the signal. In their work, StresNet and other deep architectures
(CNN and LSTM) were used to assess the possibility of monitoring driver distractions from
physiological and visual signals. They obtained 75% of F-measure with StresNet on the test
set and the participant independent scenario in recognizing whether distraction occurred
(binary classification).

4.2. Long Short-Term Memory

To mitigate the gradient vanishing and exploding problems of the RNNs, the long
short-term memory [62] (LSTM) architecture has been proposed. The LSTM cells contain
forget gates that control how much information is passed on . This also allows capturing
long-term temporal dependencies of the data, making LSTMs very attractive in sequential
processing tasks, e.g., reasoning affective state from the physiological signals. The LSTM
input layer requires three-dimensional data that refer to sequence (samples), time steps,
and features.

Awais et al. applied LSTM architecture to classify four emotions (amusement, bore-
dom, relaxation, and fear) based on physiological signals [41]. Their multimodal approach
achieved results above 93% of F-measure value. They used CASE [63], a publicly available
dataset with a rich spectrum of signals, i.e., ECG, BVP, GSR, RSP, SKT, and EMG. Tizzano
et al. used LSTM to recognize happy, sad, and neutral affective states in subjects that were
listening to music or watching a short movie [44]. They claimed to obtain 99% accuracy.
The physiological data (heart rate, 3-axis acceleration, and angular velocity) were obtained
with wearable devices—Samsung Gear 2 and Polar H7. Nakisa et al. focused on the LSTM
hyperparameter optimization in high/low arousal/valence classification task [25]. As an
input, they used EEG and BVP physiological signals recorded with wearable devices—the
Emotiv Insight headset and Empatica E4 wristband. They found differential evolution
to be the best optimization algorithm. On average, they accomplished 67 ± 9.3% of ac-
curacy in 4-class classification problem. Dar et al. utilized CNN and LSTM to classify
high/low arousal/valence from EEG, ECG, and EDA signals [42]. They claimed 91% and
99% accuracy on DREAMER and AMIGOS datasets, respectively. Wang et al. introduced
a dual-sequence LSTM architecture that is capable of processing two sequences of data
simultaneously [52]. In their case, the mel-spectrogram focused on the time axis, and the
mel-spectrogram favoring frequency axis is considered to classify utterances into happy,
angry, sad, and neutral states. They achieved 72.7 ± 0.7% in mean weighted accuracy.
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The LSTM architecture can also be used in the bidirectional version—Bi-LSTM, which
has two recurrent layers. This allows one to propagate information in two directions
(forward and backward) and is helpful for sequencing sequence tasks. Moreover, the
LSTM utilized as encoder–decoder is often extended with the attention mechanizm. It allows
passing the information from all the encoder nodes to all the decoder nodes, in contrast to
the classic scheme where only the last encoder node forwards the condensed information
to the first decoder node.

Sepas-Moghaddam et al. used VGG16 and bidirectional version of the LSTM, further
enhanced with the attention mechanism to recognize happy, angry, surprised, and neutral
states from facial images [47]. They obtained 87.6±5.4% accuracy in subject-specific and
80.3 ± 9% in subject-independent validation. Yu and Kim proposed an attention-LSTM-
attention model for classifying happy, angry, sad, and neutral states from 5-second speech
samples [53]. They first generated new features with the attention mechanism and then
applied bidirectional LSTM, and finally perform weighted pooling by an attention mecha-
nism. Their approach achieved 67.7 ± 3.4% in weighted accuracy. Zhao et al. developed a
model that combines attention-based bidirectional LSTM with attention-based fully con-
volutional networks to obtain spatial-temporal features from the speech spectrogram [55].
They validated their architecture on two datasets to classify (1) angry, happy, sad, and
neutral states, and (2) anger, emphatic, neutral, positive, and rest states. They achieved 67%
and 49% of unweighted accuracy, respectively, and concluded that deep representations
are competitive to feature representations in speech emotion recognition tasks.

4.3. Convolutional Neural Networks and Fully Convolutional Networks

The idea of using convolutional neural network (CNN) to handwritten character
recognition was proposed in the 1990s [64], but only with graphics processing units (GPUs)
implementation could CNN be applied more broadly and effectively. The CNN performs
excellent at image classification problems due to its pattern recognition abilities. The CNN
comprises (1) convolutional layers that apply filters to extract features, (2) pooling layers
that reduce the dimensionality, and (3) fully connected layers that aggregate information
from final feature maps.

The Fully Convolutional Network [65] (FCN) architecture was proposed for semantic
segmentation in images. In contrast to CNN, FCN allows input images to have various
resolutions. Additionally, the FCN does not flatten the convoluted image and instead keeps
it as 1 × 1 × depth layer to proceed with deconvolution (upsampling) to the original size.
The idea is similar to the encoder (convolution part) and decoder (deconvolution), where
we lose some information in favor of general representation (e.g., semantic segmentation
without details about segments).

In emotion recognition problems, the CNN and FCN architectures are mostly used for
facial analysis in photos and videos. Once we convert the signals into spectrograms or input
as a vector, they can also be used for emotion recognition from speech or physiological
signals.

Cheng et al. proposed an architecture based on FCN and CNN to assess valence value
from facial video recordings [49]. They designed the super-resolution FCN architecture to
ensure the robustness of the model in case the video is of low quality or low bit rate, e.g., a
video being streamed in real-time. In the best setup, they reported 0.121 of RMSE. Zhang et
al. created attention-based FCN to classify speech into four classes, i.e., happy, sad, angry,
and neutral [54]. Applying FCN allowed them to use speech fragments of various lengths
without segmentation, which would have been necessary in the case of CNN. No need
for segmentation also means there is no risk of losing potential information. The authors
claimed that using the attention mechanism makes it easier for the model to identify the
region of the speech spectrogram indicating the affective state. They accomplished 70% in
weighted accuracy. Santamaria-Granados et al. utilized CNN to perform 2-level arousal
and 2-level valence classification using ECG and EDA physiological signals [45]. They
achieved 76% accuracy for arousal and 75% for valence. Song et al. utilized CNN to perform
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3-level arousal and 3-level valence classification using EEG, ECG, EDA, Resp, and SKT
physiological signals [43]. They attained 62% and 58% accuracy for arousal and valence,
respectively. Kanjo et al. enhanced the CNN architecture with the temporal dimension of
the data by appending the LSTM cell after the fully connected layer [30]. The classification
task was a 5-level valence. As an input, they used the tensor of HR, EDA, Temp, ACC, and
environmental data, collected with wristband Microsoft Band 2, in a real-life scenario. They
obtained 95% of accuracy (95% F-measure, 0.291 RMSE) on the test set.

4.4. End-to-End Deep Learning Approach

In the classical feature-based approach to model creation, we manually extract features
from the available data. This, however, requires expert domain knowledge to (1) preprocess
signal or image (e.g., signal: wavelet/Fourier transform, spectral analysis; image: adjusting
resolution, removing Gaussian noise), (2) obtain relevant features (e.g., signal: morphology,
statistical, and nonlinear measures; image: facial landmarks, action units), and (3) select
only valuable ones. Even then, it is possible that we do not capture all the complex
dependencies and characteristics of the affective modalities. Thanks to more advanced
deep neural network architectures and more powerful computers, it has become possible
to create end-to-end networks that retrieve complex features from the raw signal or image
themselves.

Dzieżyc et al. compared ten deep neural network architectures (ResNet, StresNet,
FCN, MLP, Encoder, Time-CNN, CNN-LSTM, MLP-LSTM, MCDCNN, and Inception) in
the end-to-end affect recognition from physiological signals task [66]. They found that the
networks perform better when arousal and valence classes are well separated (strongly
differentiating stimuli) and worse when the class boundary is blurred. The best results
were achieved with FCN, ResNet, and StresNet. Schmidt et al. utilized CNN to build
an end-to-end architecture [67]. They provided BVP, EDA, ACC, and SKT physiological
signals as input. Their end-to-end model performed better (45.5 ± 1.8% F-measure) than the
feature-based model (43.8 ± 2.0% F-measure) for high/low valence/arousal classification.
Zhao et al. proposed an end-to-end visual–audio attention network (VAANet), which
consists of 2D and 3D ResNets, and several CNNs with attention [68]. Their architecture
can recognize multiple emotions from videos. The validation on the VideoEmotion-8 (eight
classes: anger, disgust, fear, sadness, anticipation, joy, surprise, and trust) and Ekman-6
(six classes: anger, disgust, fear, sadness, joy, and surprise) benchmarks indicated state-
of-the-art performance—54.5% and 55.3% accuracy, respectively. Sun et al. used residual
CNN as end-to-end architecture in the speech emotion recognition task [69]. A part of the
architecture is responsible for recognizing gender. Sun validated his model on three datasets
with different languages (Mandarin, English, and German) and outperformed models based
on the classical features, spectrograms, and other non-end-to-end deep learning solutions,
achieving up to 90.3% accuracy. Harper and Southern fed the interbeat interval (IBI) signal
into CNN and Bi-LSTM separately and concatenated networks’ output to classify valence
into low or high [70]. They performed very little processing, i.e., extracted IBI from HR and
applied z-scoring; hence, their approach can be considered end-to-end. Their architecture
outperformed the feature-based model obtaining up to 90% accuracy and 88% in F-measure
value.

4.5. Representation Learning

Most of the works presented in this article use the advantages of learning data rep-
resentation. Usually, it is capturing/extracting features from the data. However, when
learning deep networks, the representation of signals or images can have more benefits,
such as improving signal quality, generating missing samples or the whole signal, and
translating one signal into another.

A denoising autoencoder (DAE), facilitating encoder–decoder architecture with convo-
lutional layers, can be used to obtain a clean uncorrupted signal from the corrupted input
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signal. Chiang et al. compared the noise reduction abilities of DAE, CNN, and FCN for
ECG signal and found DAE to be the best [71].

The generative adversarial networks (GANs) are great for generative modeling. They
consist of two neural networks that compete against each other. The generator network
produces artificial samples from a random distribution, whereas the discriminator network
tries to recognize which samples are real and which are artificial. Adib et al. investigated
five different models from the GAN family for ECG signal generation task [72]. They
compared their effectiveness in normal cardiac cycles and found that the classic GAN
performed best. Sun et al. utilized LSTM and GAN networks to generate abnormal ECG
signal [73].

Samyoun et al. applied representation learning to translate signals/features from
the wrist device into the signals/features from the chest device [74]. They used GANs to
translate homogeneous signals (EDA from the wrist into EDA from the chest), Bi-LSTM to
translate heterogeneous signals (BVP from the wrist into ECG and Resp from the chest), and
MLP to translate features of uncorrelated signals (all wrist features into EMG from chest
features). They showed that stress detection with translated features has a competitive
performance to stress detection with the original signals. This opens the possibility of using
more user-friendly wrist devices instead of inconvenient chest devices in real-life affective
studies.

4.6. Model Personalization

An important aspect to consider in the emotion recognition task is model generaliza-
tion and personalization. On the one hand, we would like to have a predictive model that
can be applied irrespectively to the participants’ demographic and physiological charac-
teristics. This would allow recognizing emotions in people that did not provide any prior
data or are interacting with the system for the first time. On the other hand, people are very
different in terms of psychological and physiological elements when it comes to expressing
and perceiving emotions. Hence, a personal model might perform better than the general
one.

The most straightforward approach to personalization is creating a separate model for
each user. However, it requires a large number of personal samples. Udovičić et al. achieved
better results with the per-person model than with the general model in the arousal and
valence classification from EDA and BVP signals [75]. Tian et al. clustered participants
into five groups based on their personality traits [76]. Such per-group personalization
was enough to improve the model’s accuracy in relation to the general model for arousal
and valence classification using the EEG signal by 10.2% and 9.1%, respectively. Taylor
et al. proposed a multitask learning neural network architecture that enables model
personalization in the assessment of the mood, stress, and health of individuals in the next
day[77]. Rather than creating a separate model for each user, the multitask ability enables
personalization. They obtained up to 82.2% accuracy (0.818 AUC). Can et al. demonstrate
that creating a separate model for each participant outperformed per-group personalization
and general model in stress classification task [78]. They achieved a gain of up to 17
percentage points.

5. Existing Systems

The iMotions is a platform with the broadest spectrum of services targeted at affective
research and analysis for scientific and industry clients [79]. For both types of clients, the
platform is paid. According to the pricing plan, it is very expensive – for academics, it is ca.
$3.5k per module, and a module is usually related to a single modality. The software can
collect and synchronize data from many sensors, among others: EDA, EEG, ECG, EMG, and
eye-tracking and facial recognition devices. The iMotions offer integration with the most
popular devices on the market produced by Emotiv, Empatica, Shimmer, and Tobii. It also
includes a signal processing module that can perform basic processing such as obtaining
HR and HRV from ECG, detecting peaks in EDA, obtaining PSD from EEG, and others.
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Moreover, a mobile module is available that facilitates conducting field studies. However,
there are yet no use-cases to validate this module. At the current stage, the most valuable
benefits of the platform are collecting self-assessments and data from various devices and
performing analyses. With more features (especially signal processing algorithms), the
platform would gain attractiveness.

Gloor et al. developed the Happimeter, an Android application for monitoring emotions
in daily life [80]. The system requires a smartwatch that measures HR and collects self-
assessments and location data. Once an appropriate amount of data is collected, the system
starts predicting the user’s mood. The Happimeter offers interesting insights, such as
who or what location makes us (un)happy, active, or stressed. It also includes the social
aspect—we can build a network of friends and monitor their mood. The application was
developed for Wear OS smartwatches and is publicly available. The advantage of the
Happimeter is that it creates a personalized model to perform predictions. On the other
hand, the HR is collected infrequently (the exact frequency is not specified) and as a simple
averaged value instead of HRV, BVP, or other continuous, rich signal. As a result, the
Happimeter is more likely to recognize the overall long-term mood rather than the specific
emotions experienced at a specific moment. Moreover, it can only measure three levels of
mood, activity, and stress. The researchers give a little information about the performed
machine learning—feature extraction and model creation and validation. The system was
utilized by the creators in several studies, e.g., to assess employee satisfaction (happiness,
activity, and stress) [81], a person’s creativity [82], and even personal moral values [83].
However, in most of these studies, the authors took part in the study as subjects, which can
lead to bias and can question the quality of the results [84].

Tripathi et al. proposed an EmoWare framework for personalized video recommenda-
tions [85]. They utilized the reinforcement learning approach to extract users’ individual
behavior and a deep-bidirectional RNN to predict relevant movies. The system has not
been validated in real life. In general, most proposed systems do not leave the laboratory
walls, i.e., they are not validated in daily life. There are also cases when the field validation
is performed improperly. For instance, Fortune et al. [86,87] claimed that facial- and EEG-
based emotion recognition of employees in real-time is possible. In fact, in three points
of the day (before the work, in the middle of the day, and after the work), the authors
showed short affective movies to the employees and measured their EEG and EDA at
those moments. Later, reactions to the stimuli were classified into positive vs. negative
states. Hence, the authors recognize emotions in response to the consumed stimuli. The
employees’ emotions were not connected with the work-related conditions or environment,
or type of job they perform. The authors’ claims of recognizing emotions at work were
exaggerated, as the context of the work is barely relevant here.

Hernandez et al. looked over some of the recent emotion recognition commercial
applications in market research, human resources, transportation, defense and security,
education, and mental health areas [88]. They discussed several issues of existing systems,
e.g., (1) systems describe their functionality insufficiently, often hiding the technical limita-
tions; (2) a limited amount of data exists that can be used to train models; (3) users may
over-rely on the systems, which can lead to the physical or emotional injury; (4) privacy,
freedom, and other human rights may be abused by using/applying such systems; (5)
and more generally, emotions do not have agreed definition and are difficult to label. The
authors propose the ethical guidelines that should help mitigate the recognized issues.

Huge corporations offering services to millions of people noticed the importance of
including affective aspects in their products. For example, Netflix and Spotify offer search
engines that consider how the content affects the emotional state of the user [89,90]. The
next step is probably to automate such solutions, e.g., by creating personalized playlists
tailored to our affective state at a given moment [91].
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6. Futures of Emotion Recognition

Emotion recognition studies are most likely to be continued in three main directions,
i.e., ER from facial expressions, speech, and physiology, because each approach has its
unique advantages and applications. The camera-based ER from the face is comfortable
and accurate enough when sitting in front of a computer, although it can be deceived by
controlling facial expressions. The ER from speech is an ideal solution for voice assistants
and human–robot communication that is soon a reality. The personalized models could be
stored locally on the devices, thus improving the privacy and security of such a solution.
The ER from physiology has the most significant potential to become the most popular
and broadly applied approach. Comfortable and user-friendly wearables monitoring our
vital functions in almost any condition are available and already pervasive in our life. At
the same time, physiology is the most difficult to manipulate; hence, it can be considered
ground truth for other approaches. Another advantage of physiology is the possibility
of noncontact measurement, e.g., a camera analyzing the change in the skin texture or
color [92,93] or radio-frequency analysis for breath and heart rate detection [94].

Several challenges need to be tackled to enable precise and reliable affective reasoning
in daily life. Currently, the most significant imperfection of sensors measuring physiology
is the inaccuracy of measurement in motion. An unreliable measurement undermines any
further effort to recognize emotions during movement. These imperfections can be partially
reduced with advanced signal processing and transformation methods. However, such
a fundamental issue should be fixed at the sensor level, i.e., new ways of measurements
prone to motion have to be developed. Simultaneously, a universally accepted protocol of
a new device validation against medical-level hardware should be proposed.

In addition, wearable devices should become even smaller, even more convenient, and
even more useful for users while offering long battery life, convenient data transfer, and
reliability. Particularly prominent directions seem to be smart clothes, smart prosthesis [95],
and other everyday items that can be made smart. Until then, most probably, smartwatches
will be the primary source of physiological data and the foundation of affective field studies.
They are cheap, useful for users, have many sensors (BVP, ACC, and GYRO), allow for
integration with systems through a custom-made application and, above all, are already
omnipresent. Their only disadvantage is the lack of an EDA sensor, which can be easily
fixed.

In the signal processing and transformation domain, more algorithms for artifacts and
outliers removal and reconstruction of signals recorded in motion are necessary. Especially
promising are the wavelet-based methods that extract affective patterns from the signals.

In the machine learning field, new deep learning architectures customized for affective
studies can be developed (such as in the case of the StresNet). Such architectures would
preferably reflect complex relations across emotions and their personal character. While
very little has been investigated so far, a multilabel approach to emotion classification
could potentially reflect the natural coexistence of emotions in real life. Further research
on model generalization and personalization is also necessary. Particularly, new strategies
for combining the general underlying human patterns with the significant individual
differences are required.

Large and high-quality data sets must be collected to develop better predictive models.
This, in turn, requires simple and accurate methods to annotate the signal with the affective
label during everyday life. The current solutions include developing and validating short,
yet rich in information, self-assessments that may be completed on the smartwatch or
smartphone, such as ESM [96] or EMA [97]. Another option is to assist the participant with
a pretrained model that recognizes states of arousal or intense emotions [27,98].

The ethical part of affective studies is a couple of years behind the technological
advancements and still insufficiently discussed. We need more analysis, debate, and legal
actions to ensure that affective technology is safe for the people and is not abused.
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7. Conclusions

In recent years, we have experienced a number of breakthroughs in sensors and
machine learning domains that make it possible to move the affective studies out of the lab
into real life. Although there are still challenges to overcome, the first systems are already
being used in everyday life. Further improvements, however, are necessary to enable the
development of more precise and reliable systems.

This paper discusses the current state of the art in sensors, signal processing and
transformation, and deep machine learning areas. Commercially available wearables and
other devices used to capture traces of human emotions are presented. The role of signal
processing and transformation in emotion recognition is explained with examples. The most
prominent deep learning architectures and various techniques to improve model efficiency
are extensively discussed. Finally, the research directions with the highest opportunity to
improve emotion recognition are suggested.

Funding: This work was partially supported by the National Science Centre, Poland, project no.
2020/37/B/ST6/03806; by the statutory funds of the Department of Artificial Intelligence, Wroclaw
University of Science and Technology; and by the Polish Ministry of Education and Science–the
CLARIN-PL Project.

Acknowledgments: The author would like to thank members of the Emognition research group for
their contribution to this article.

Conflicts of Interest: The author declares no conflict of interest.

Acronyms
The list of acronyms used in this article:

Signals, Sensors, and Data From Wearables
Acronym Full Name
ACC accelerometer
AL ambient light
ALT altimeter
AT ambient temperature
BAR barometer
BP blood pressure
BVP blood volume pulse
CAL calories burned
ECG electrocardiogra(ph/m)
EEG electroencephalogra(ph/m)
EMG electromyogra(ph/m)
GSR galvanic skin response
GYRO gyroscope
HR heart rate
HRV heart rate variability
IBI interbit interval
MAG magnetometer
MIC microphone
PPG photoplethysmograph
PPI peak-to-peak interval
RRI R-R interval
RSP respiration rate
SKT skin temperature
SpO2 blood oxygen saturation
STP no. of steps
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TERM termometer
UV ultraviolet
Deep Learning Architectures and Signal Processing
Acronym Full Name
Bi- bidirectional-
CNN convolutional neural networks
DAE denoising autoencoder
DTD dynamic threshold difference
FCN fully convolutional networks
FFA fast Fourier transform
GAN generative adversarial networks
GRU gated recurrent unit
ICA independent component analysis
LSTM long short-term memory
MCDCNN multichannel deep convolutional neural networks
MLP multilayer perceptron
ResNet residual networks
RNN recurrent neural networks
SPARE spectral peak recovery
StresNet spectrotemporal residual networks
VGG visual geometry group
WT wavelet transform

References
1. O’Brien, D.T. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2012.
2. He, C.; Yao, Y.J.; Ye, X.S. An emotion recognition system based on physiological signals obtained by wearable sensors. In Wearable

Sensors and Robots; Springer: Berlin, Germany, 2017; pp. 15–25.
3. Feng, H.; Golshan, H.M.; Mahoor, M.H. A wavelet-based approach to emotion classification using EDA signals. Expert Syst. Appl.

2018, 112, 77–86. [CrossRef]
4. Pollreisz, D.; TaheriNejad, N. A simple algorithm for emotion recognition, using physiological signals of a smart watch.

In Proceedings of the 39th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (EMBC), Jeju
Island, Korea, 11–15 July 2017; pp. 2353–2356.

5. Fernández-Aguilar, L.; Martínez-Rodrigo, A.; Moncho-Bogani, J.; Fernández-Caballero, A.; Latorre, J.M. Emotion detection
in aging adults through continuous monitoring of electro-dermal activity and heart-rate variability. In Proceedings of the
International Work-Conference on the Interplay Between Natural and Artificial Computation, Tenerife, Spain, 3–7 June 2019;
pp. 252–261.

6. Hu, L.; Yang, J.; Chen, M.; Qian, Y.; Rodrigues, J.J. SCAI-SVSC: Smart clothing for effective interaction with a sustainable vital
sign collection. Future Gener. Comput. Syst. 2018, 86, 329–338. [CrossRef]

7. Albraikan, A.; Hafidh, B.; El Saddik, A. iAware: A real-time emotional biofeedback system based on physiological signals. IEEE
Access 2018, 6, 78780–78789. [CrossRef]

8. Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing wesad, a multimodal dataset for wearable
stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, Boulder, CO,
USA, 16–20 October 2018; pp. 400–408.

9. Setiawan, F.; Khowaja, S.A.; Prabono, A.G.; Yahya, B.N.; Lee, S.L. A framework for real time emotion recognition based on human
ans using pervasive device. In Proceedings of the 42nd Annual Computer Software and Applications Conference (COMPSAC),
Tokyo, Japan, 23–27 July 2018; pp. 805–806.

10. Álvarez, P.; Zarazaga-Soria, F.J.; Baldassarri, S. Mobile music recommendations for runners based on location and emotions: The
DJ-Running system. Pervasive Mob. Comput. 2020, 67, p. 101242. [CrossRef]
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